期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:330
Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains
Article
Yang, Z.1  Yuan, Z.1  Nie, Y.1  Wang, J.1  Zhu, X.1  Liu, F.2 
[1] Northwestern Polytech Univ, Res Ctr Computat Sci, Xian 710072, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
关键词: Finite element method;    Riesz fractional derivative;    Nonlinear source term;    Irregular domain;   
DOI  :  10.1016/j.jcp.2016.10.053
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider two-dimensional Riesz space fractional diffusion equations with nonlinear source term on convex domains. Applying Galerkin finite element method in space and backward difference method in time, we present a fully discrete scheme to solve Riesz space fractional diffusion equations. Our breakthrough is developing an algorithm to form stiffness matrix on unstructured triangular meshes, which can help us to deal with space fractional terms on any convex domain. The stability and convergence of the scheme are also discussed. Numerical examples are given to verify accuracy and stability of our scheme. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2016_10_053.pdf 3299KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次