期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:415
A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting
Article
Asante-Asamani, E. O.1  Kleefeld, A.2  Wade, B. A.3 
[1] Clarkson Univ, Dept Math, Potsdam, NY 13699 USA
[2] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[3] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
关键词: Exponential time differencing;    Real distinct pole;    Dimensional splitting;    Reaction-diffusion systems;    Matrix exponential;   
DOI  :  10.1016/j.jcp.2020.109490
来源: Elsevier
PDF
【 摘 要 】

A second-order L-stable exponential time-differencing (ETD) method is developed by combining an ETD scheme with approximating the matrix exponentials by rational functions having real distinct poles (RDP), together with a dimensional splitting integrating factor technique. A variety of non-linear reaction-diffusion equations in two and three dimensions with either Dirichlet, Neumann, or periodic boundary conditions are solved with this scheme and shown to outperform a variety of other second-order implicit-explicit schemes. An additional performance boost is gained through further use of basic parallelization techniques. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2020_109490.pdf 1871KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:2次