期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:227
Multiple extremal eigenpairs by the power method
Article
Gubernatis, J. E.1  Booth, T. E.2 
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA
关键词: numerical methods;    large matrices;    multiple extremal eigenvalues;    power method;   
DOI  :  10.1016/j.jcp.2008.06.001
来源: Elsevier
PDF
【 摘 要 】

We report the production and benchmarking of several refinements of the power method that enable the computation of multiple extremal eigenpairs of very large matrices. In these refinements we used an observation by Booth that has made possible the calculation of up to the 10th eigenpair for simple test problems simulating the transport of neutrons in the steady state of a nuclear reactor. Here, we summarize our techniques and efforts to-date on determining mainly just the two largest or two smallest eigenpairs. To illustrate the effectiveness of the techniques, we determined the two extremal eigenpairs of a cyclic matrix, the transfer matrix of the two-dimensional Ising model, and the Hamiltonian matrix of the one-dimensional Hubbard model. (C) 2008 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2008_06_001.pdf 297KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次