期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:425
Abound-preserving high order scheme for variable density incompressible Navier-Stokes equations
Article
Li, Maojun1  Cheng, Yongping2  Shen, Jie3  Zhang, Xiangxiong3 
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词: Variable density incompressible flows;    Naiver-Stokes equations;    Discontinuous Galerkin method;    Bound-preserving scheme;    Finite element method;   
DOI  :  10.1016/j.jcp.2020.109906
来源: Elsevier
PDF
【 摘 要 】

For numerical schemes to the incompressible Navier-Stokes equations with variable density, it is a critical property to preserve the bounds of density. A bound-preserving high order accurate scheme can be constructed by using high order discontinuous Galerkin (DG) methods or finite volume methods with a bound-preserving limiter for the density evolution equation, with any popular numerical method for the momentum evolution. In this paper, we consider a combination of a continuous finite element method for momentum evolution and a bound-preserving DG method for density evolution. Fully explicit and explicit-implicit strong stability preserving Runge-Kutta methods can be used for the time discretization for the sake of bound-preserving. Numerical tests on representative examples are shown to demonstrate the performance of the proposed scheme. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2020_109906.pdf 1352KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次