期刊论文详细信息
| JOURNAL OF COMPUTATIONAL PHYSICS | 卷:238 |
| Nonlinear Krylov acceleration applied to a discrete ordinates formulation of the k-eigenvalue problem | |
| Article | |
| Calef, Matthew T.1  Fichtl, Erin D.1  Warsa, James S.1  Berndt, Markus1  Carlson, Neil N.1  | |
| [1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA | |
| 关键词: Anderson mixing; Boltzmann equation; Boltzmann k-eigenvalue problem; Broyden; JFNK; | |
| DOI : 10.1016/j.jcp.2012.12.024 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We compare a variant of Anderson Mixing with the Jacobian-Free Newton-Krylov and Broyden methods applied to an instance of the k-eigenvalue formulation of the linear Boltzmann transport equation. We present evidence that one variant of Anderson Mixing finds solutions in the fewest number of iterations. We examine and strengthen theoretical results of Anderson Mixing applied to linear problems. (C) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jcp_2012_12_024.pdf | 1339KB |
PDF