| JOURNAL OF COMPUTATIONAL PHYSICS | 卷:287 |
| Comparison of polynomial approximations to speed up planewave-based quantum Monte Carlo calculations | |
| Article | |
| Parker, William D.1  Umrigar, C. J.2  Alfe, Dario3,4  Petruzielo, F. R.2  Hennig, Richard G.1,5  Wilkins, John W.1  | |
| [1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA | |
| [2] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA | |
| [3] UCL, Dept Earth Sci, London WC1E 6BT, England | |
| [4] UCL, Dept Phys & Astron, London WC1E 6BT, England | |
| [5] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA | |
| 关键词: Quantum Monte Carlo; B-splines; | |
| DOI : 10.1016/j.jcp.2015.01.037 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic systems depends strongly on the method of storing and evaluating the many-particle wave function. Previous work by Williamson et al. (2001) [35] and Alfe and Gillan, (2004) [36] has demonstrated the reduction of the 0(N-3) cost of evaluating the Slater determinant with planewaves to 0(N-2) using localized basis functions. We compare four polynomial approximations as basis functions - interpolating Lagrange polynomials, interpolating piecewise-polynomial-form (pp-) splines, and basis-form (B-) splines (interpolating and smoothing). All these basis functions provide a similar speedup relative to the planewave basis. The pp-splines have eight times the memory requirement of the other methods. To test the accuracy of the basis functions, we apply them to the ground state structures of Si, Al, and MgO. The polynomial approximations differ in accuracy most strongly for MgO, and smoothing B-splines most closely reproduce the planewave value for of the variational Monte Carlo energy. Using separate approximations for the Laplacian of the orbitals increases the accuracy sufficiently to justify the increased memory requirement, making smoothing B-splines, with separate approximation for the Laplacian, the preferred choice for approximating planewave-represented orbitals in QMC calculations. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jcp_2015_01_037.pdf | 535KB |
PDF