| JOURNAL OF COMPUTATIONAL PHYSICS | 卷:227 |
| Statistical mechanics of Arakawa's discretizations | |
| Article | |
| Dubinkina, Svetlana1  Frank, Jason1  | |
| [1] CWI, NL-1090 GB Amsterdam, Netherlands | |
| 关键词: conservative discretizations; statistical mechanics; geometric numerical integration; quasi-geostrophic flow; geophysical fluid dynamics; | |
| DOI : 10.1016/j.jcp.2007.09.002 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
The results of statistical analysis of simulation data obtained from long time integrations of geophysical fluid models greatly depend on the conservation properties of the numerical discretization used. This is illustrated for quasi- geostrophic flow with topographic forcing.. for which a well established statistical mechanics exists. Statistical mechanical theories are constructed for the discrete dynamical systems arising from three discretizations due to Arakawa [Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1 (1966) 119-143] which conserve energy.. enstrophy or both. Numerical experiments with conservative and projected time integrators show that the statistical theories accurately explain the differences observed in statistics derived from the discretizations. (C) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jcp_2007_09_002.pdf | 1283KB |
PDF