期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:282
Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems
Article
Lu, Fei1,2  Morzfeld, Matthias1,2  Tu, Xuemin3  Chorin, Alexandre J.1,2 
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词: Polynomial chaos expansion;    Bayesian inverse problem;    Monte Carlo sampling;   
DOI  :  10.1016/j.jcp.2014.11.010
来源: Elsevier
PDF
【 摘 要 】

Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2014_11_010.pdf 474KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次