期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:290
Angular momentum preserving cell-centered Lagrangian and Eulerian schemes on arbitrary grids
Article
Despres, B.1  Labourasse, E.2 
[1] Univ Paris 06, Lab JL Lions, UMR 7598, F-75005 Paris, France
[2] CEA, DAM, DIF, F-91297 Arpajon, France
关键词: Compressible fluid dynamics;    Cell-centered Lagrangian and Eulerian schemes;    General grids;    Angular momentum conservation;    Conservation laws;   
DOI  :  10.1016/j.jcp.2015.02.032
来源: Elsevier
PDF
【 摘 要 】

We address the conservation of angular momentum for cell-centered discretization of compressible fluid dynamics on general grids. We concentrate on the Lagrangian step which is also sufficient for Eulerian discretization using Lagrange+Remap. Starting from the conservative equation of the angular momentum, we show that a standard Riemann solver (a nodal one in our case) can easily be extended to update the new variable. This new variable allows to reconstruct all solid displacements in a cell, and is analogous to a partial Discontinuous Galerkin (DG) discretization. We detail the coupling with a second-order Muscl extension. All numerical tests show the important enhancement of accuracy for rotation problems, and the reduction of mesh imprint for implosion problems. The generalization to axi-symmetric case is detailed. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2015_02_032.pdf 7203KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次