期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:232
High-order optimal edge elements for pyramids, prisms and hexahedra
Article
Bergot, Morgane2  Durufle, Marc1 
[1] INRIA Bordeaux Sud Ouest, BACCHUS Project Team, Bordeaux, France
[2] INRIA Nancy Grand Est, CALVI Project Team, Strasbourg, France
关键词: Edge elements;    High-order finite element;    Pyramids;    Maxwell's equations;   
DOI  :  10.1016/j.jcp.2012.08.005
来源: Elsevier
PDF
【 摘 要 】

Edge elements are a popular method to solve Maxwell's equations especially in time-harmonic domain. However, when non-affine elements are considered, elements of the Nedelec's first family [19] are not providing an optimal rate of the convergence of the numerical solution toward the solution of the exact problem in H(curl)-norm. We propose new finite element spaces for pyramids, prisms, and hexahedra in order to recover the optimal convergence. In the particular case of pyramids, a comparison with other existing elements found in the literature is performed. Numerical results show the good behavior of these new finite elements. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2012_08_005.pdf 2621KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次