期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS | 卷:436 |
Helicity-conservative finite element discretization for incompressible MHD systems | |
Article | |
Hu, Kaibo1  Lee, Young-Ju2  Xu, Jinchao3  | |
[1] Univ Minnesota, Sch Math, 206 Church St SE, Minneapolis, MN 55455 USA | |
[2] Texas State Univ, Dept Math, San Marcos, TX USA | |
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA | |
关键词: Magnetohydrodynamics; Helicity; Divergence-free; Structure-preserving; Finite element; | |
DOI : 10.1016/j.jcp.2021.110284 | |
来源: Elsevier | |
【 摘 要 】
We construct finite element methods for the incompressible magnetohydrodynamics (MHD) system that precisely preserve the magnetic and cross helicity, the energy law and the magnetic Gauss law at the discrete level. The variables are discretized as discrete differential forms in a de Rham complex. We present numerical tests to show the performance of the algorithm. (c) 2021 Elsevier Inc. All rights reserved. Superscript/Subscript Available
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcp_2021_110284.pdf | 1443KB | download |