期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:230
Approximation of the inductionless MHD problem using a stabilized finite element method
Article
Planas, Ramon1  Badia, Santiago1  Codina, Ramon1 
[1] Univ Politecn Cataluna, CIMNE, ES-08034 Barcelona, Spain
关键词: Inductionless MHD;    Primal-dual formulation;    Stabilized finite element formulation;    Variational multiscale method;    Monolithic scheme;    HCLL test blanket module;   
DOI  :  10.1016/j.jcp.2010.12.046
来源: Elsevier
PDF
【 摘 要 】

In this work, we present a stabilized formulation to solve the inductionless magnetohydrodynamic (MHD) problem using the finite element (FE) method. The MHD problem couples the Navier-Stokes equations and a Darcy-type system for the electric potential via Lorentz's force in the momentum equation of the Navier-Stokes equations and the currents generated by the moving fluid in Ohm's law. The key feature of the FE formulation resides in the design of the stabilization terms, which serve several purposes. First, the formulation is suitable for convection dominated flows. Second, there is no need to use interpolation spaces constrained to a compatibility condition in both sub-problems and therefore, equal-order interpolation spaces can be used for all the unknowns. Finally, this formulation leads to a coupled linear system; this monolithic approach is effective, since the coupling can be dealt by effective preconditioning and iterative solvers that allows to deal with high Hartmann numbers. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2010_12_046.pdf 1999KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次