期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:280
Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates
Article
Jakeman, J. D.1  Wildey, T.1 
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词: Uncertainty quantification;    A posteriori error estimation;    Sparse grids;    Stochastic collocation;    Adaptivity;   
DOI  :  10.1016/j.jcp.2014.09.014
来源: Elsevier
PDF
【 摘 要 】

In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2014_09_014.pdf 1272KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:1次