期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:299
A minimum Sobolev norm technique for the numerical discretization of PDEs
Article
Chandrasekaran, S.1  Mhaskar, H. N.2,3 
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
[3] Claremont Grad Univ, Inst Math Sci, Claremont, CA 91711 USA
关键词: Minimum Sobolev norm;    Golomb-Weinberger;    First-order PDEs;   
DOI  :  10.1016/j.jcp.2015.07.025
来源: Elsevier
PDF
【 摘 要 】

Partial differential equations (PDEs) are discretized into an under-determined system of equations and a minimum Sobolev norm solution is shown to be efficient to compute and converge under very generic conditions. Numerical results of a single code, that can handle PDEs in first-order form on complicated polygonal geometries, are shown for a variety of PDEs: variable coefficient div-curl, scalar elliptic PDEs, elasticity equation, stationary linearized Navier-Stokes, scalar fourth-order elliptic PDEs, telegrapher's equations, singular PDEs, etc. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2015_07_025.pdf 555KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次