期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:211
A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods
Article
Tan, LJ ; Zabaras, N
关键词: level set method;    crystal growth;    dendritic solidification;    front-tracking methods;    fixed-domain methods;    fluid flow;   
DOI  :  10.1016/j.jcp.2005.05.013
来源: Elsevier
PDF
【 摘 要 】

A method combining features of front-tracking methods and fixed-domain methods is presented to model dendritic solidification of pure materials. To explicitly track the interface growth and shape of the solidifying crystals, a front-tracking approach based on the level set method is implemented. To easily model the heat and momentum transport, a fixed-domain method is implemented assuming a diffused freezing front where the liquid fraction is defined in terms of the level set function. The fixed-domain approach, by avoiding the explicit application of essential boundary conditions on the freezing front, leads to an energy conserving methodology that is not sensitive to the mesh size. To compute the freezing front morphology, an extended Stefan condition is considered. Applications to several classical Stefan problems and two- and three-dimensional crystal growth of pure materials in an undercooled melt including the effects of melt flow are considered. The computed results agree very well with available analytical solutions as well as with results obtained using front-tracking techniques and the phase-field method. (c) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2005_05_013.pdf 4885KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次