期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:230
A nonlinear PDE model for reconstructing a regular surface from sampled data using a level set formulation on triangular meshes
Article
Claisse, A.1  Frey, P.1 
[1] Univ Paris 06, UPMC, Lab JL Lions, UMR 7598, F-75005 Paris, France
关键词: Numerical analysis;    Level set method;    Mean curvature evolution;    Hamilton-Jacobi equation;    Nonlinear PDE problem;    Surface reconstruction;    Unstructured mesh;   
DOI  :  10.1016/j.jcp.2011.02.039
来源: Elsevier
PDF
【 摘 要 】

In this paper, we propose a nonlinear PDE model for reconstructing a regular surface from sampled data. At first, we show the existence and the uniqueness of a viscosity solution to this problem. Then we propose a numerical scheme for solving the nonlinear level set equation on unstructured triangulations adapted to the data sample. We show the consistency of this scheme. In addition, we show how to compute nodewise first and second order derivatives. Some application examples of curve or surface construction are provided to illustrate the potential and to demonstrate the accuracy of this method. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2011_02_039.pdf 3025KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:2次