期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:227
An hybrid finite volume-finite element method for variable density incompressible flows
Article
Calgaro, Caterina2,3  Creuse, Emmanuel1,3  Goudon, Thierry2,3 
[1] Univ Valenciennes & Hainaut Cambresis, FR CNRS 2956, Lab Math & Appl Valenciennes, F-59313 Valenciennes 09, France
[2] Univ Sci & Tech Lille Flandres Artois, CNRS, UMR 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[3] Ctr Rech INRIA Futurs, Equipe Projet SIMPAF, F-59658 Villeneuve Dascq, France
关键词: incompressible Navier-Stokes equations;    variable density flows;    finite element method;    finite volume method;    Rayleigh-Taylor instability;   
DOI  :  10.1016/j.jcp.2008.01.017
来源: Elsevier
PDF
【 摘 要 】

This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2008_01_017.pdf 2102KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次