期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:275
A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D
Article
Boscheri, Walter1  Dumbser, Michael1 
[1] Univ Trent, Dept Civil Environm & Mech Engn, Lab Appl Math, I-38123 Trento, Italy
关键词: Arbitrary-Lagrangian-Eulerian (ALE) finite volume schemes;    WENO reconstruction on moving unstructured tetrahedral meshes;    High order of accuracy in space and time;    Stiff source terms;    Local rezoning;    Conservation laws and non-conservative hyperbolic PDE;    Euler equations;    MHD equations;    Compressible multi-phase flows;    Baer-Nunziato model;   
DOI  :  10.1016/j.jcp.2014.06.059
来源: Elsevier
PDF
【 摘 要 】

In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2014_06_059.pdf 14636KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次