期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:396
Rational Krylov methods for functions of matrices with applications to fractional partial differential equations
Article
Aceto, L.1  Bertaccini, D.2,3  Durastante, F.4  Novati, R.5 
[1] Univ Pisa, Dipartimento Matemat, Via Buonarroti 1-C, Pisa, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Viale Ric Sci 1, Rome, Italy
[3] Natl Res Council CNR, Ist Applicaz Calcolo IAC M Picone, Rome, Italy
[4] Univ Pisa, Dipartimento Informat, Largo Bruno Pontecorvo 3, Pisa, Italy
[5] Univ Trieste, Dept Math & Geosci, Via Valerio 12-1, I-34127 Trieste, Italy
关键词: Fractional Laplacian;    Matrix functions;    Krylov methods;    Gauss-Jacobi rule;   
DOI  :  10.1016/j.jcp.2019.07.009
来源: Elsevier
PDF
【 摘 要 】

In this paper we propose a new choice of poles to define reliable rational Krylov methods. These methods are used for approximating function of positive definite matrices. In particular, the fractional power and the fractional resolvent are considered because of their importance in the numerical solution of fractional partial differential equations. The numerical experiments on some fractional partial differential equation models confirm that the proposed approach is promising. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2019_07_009.pdf 1295KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次