期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:419
A linearly implicit energy-preserving exponential integrator for the nonlinear Klein-Gordon equation
Article
Jiang, Chaolong1  Wang, Yushun2  Cai, Wenjun2 
[1] Yunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab Numer Simulat Large Scale Complex, Nanjing 210023, Peoples R China
关键词: Scalar auxiliary variable approach;    Linearly implicit scheme;    Energy-preserving scheme;    Conservative system;   
DOI  :  10.1016/j.jcp.2020.109690
来源: Elsevier
PDF
【 摘 要 】

In this paper, we generalize the exponential energy-preserving integrator proposed in the recent paper [SIAM J. Sci. Comput. 38 (2016) A1876-A1895] for conservative systems, which now becomes linearly implicit by further utilizing the idea of the scalar auxiliary variable approach. Comparing with the original exponential energy-preserving integrator which usually leads to a nonlinear algebraic system, our new method only involves a linear system with a constant coefficient matrix. Taking the nonlinear Klein-Gordon equation and the nonlinear Schrodinger equation for examples, we derive the concrete energy-preserving schemes and demonstrate their high efficiency through numerical experiments. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2020_109690.pdf 6843KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次