期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:328
A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems
Article
Liu, Hailiang1  Wang, Zhongming2 
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
关键词: Poisson-Nernst-Planck equation;    Free energy;    Discontinuous Galerkin methods;   
DOI  :  10.1016/j.jcp.2016.10.008
来源: Elsevier
PDF
【 摘 要 】

We design an arbitrary-order free energy satisfying discontinuous Galerkin (DG) method for solving time-dependent Poisson-Nernst-Planck systems. Both the semi-discrete and fully discrete DG methods are shown to satisfy the corresponding discrete free energy dissipation law for positive numerical solutions. Positivity of numerical solutions is enforced by an accuracy-preserving limiter in reference to positive cell averages. Numerical examples are presented to demonstrate the high resolution of the numerical algorithm and to illustrate the proven properties of mass conservation, free energy dissipation, as well as the preservation of steady states. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2016_10_008.pdf 563KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次