期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:262
Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements
Article
Bosch, Jessica1  Stoll, Martin1  Benner, Peter1,2 
[1] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
[2] Tech Univ Chemnitz, D-09126 Chemnitz, Germany
关键词: Cahn-Hilliard equation;    Double obstacle potential;    PDE-constrained optimization;    Moreau-Yosida regularization technique;    Semi-smooth Newton method;    Preconditioning;   
DOI  :  10.1016/j.jcp.2013.12.053
来源: Elsevier
PDF
【 摘 要 】

We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2013_12_053.pdf 2137KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次