期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:273
High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation
Article
Xiong, Tao1  Qiu, Jing-Mei1  Xu, Zhengfu2  Christlieb, Andrew3 
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词: Semi-Lagrangian method;    Finite difference WENO scheme;    Maximum principle preserving;    Parametrized flux limiter;    Vlasov equation;   
DOI  :  10.1016/j.jcp.2014.05.033
来源: Elsevier
PDF
【 摘 要 】

In this paper, we propose the parametrized maximum principle preserving (MPP) flux limiter, originally developed in [37], to the semi-Lagrangian finite difference weighted essentially non-oscillatory scheme for solving the Vlasov equation. The MPP flux limiter is proved to maintain up to fourth order accuracy for the semi-Lagrangian finite difference scheme without any time step restriction. Numerical studies on the Vlasov-Poisson system demonstrate the performance of the proposed method and its ability in preserving the positivity of the probability distribution function while maintaining the high order accuracy. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2014_05_033.pdf 4237KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次