期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:218
Adaptive mesh refinement for coupled elliptic-hyperbolic systems
Article
Pretorius, Frans ; Choptuik, Matthew W.
关键词: adaptive mesh refinement;    coupled elliptic-hyperbolic systems;    finite different methods;    numerical relativity;    numerical methods;   
DOI  :  10.1016/j.jcp.2006.02.011
来源: Elsevier
PDF
【 摘 要 】

We present a modification to the Berger and Oliger adaptive mesh refinement algorithm designed to solve systems of coupled, non-linear, hyperbolic and elliptic partial differential equations. Such systems typically arise during constrained evolution of the field equations of general relativity. The novel aspect of this algorithm is a technique of extrapolation and delayed solution used to deal with the non-local nature of the solution of the elliptic equations, driven by dynamical sources, within the usual Berger and Oliger time-stepping framework. We show empirical results demonstrating the effectiveness of this technique in axisymmetric gravitational collapse simulations, and further demonstrate that the solution time scales approximately linearly with problem size. We also describe several other details of the code, including truncation error estimation using a self-shadow hierarchy, and the refinement-boundary interpolation operators that are used to help suppress spurious high-frequency solution components (noise). (c) 2006 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2006_02_011.pdf 943KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次