期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:393
Identification of physical processes via combined data-driven and data-assimilation methods
Article
Chang, Haibin1,2  Zhang, Dongxiao1,2 
[1] Peking Univ, Coll Engn, BIC ESAT, ERE, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Engn, SKLTCS, Beijing 100871, Peoples R China
关键词: PDE discovery;    Data driven method;    Data assimilation method;    Physical processes;    Solute transport;   
DOI  :  10.1016/j.jcp.2019.05.008
来源: Elsevier
PDF
【 摘 要 】

With the advent of modern data collection and storage technologies, data-driven approaches have been developed for discovering the governing partial differential equations (PDE) of physical problems. However, in the extant works the model parameters in the equations are either assumed to be known or have a linear dependency. Therefore, most of the realistic physical processes cannot be identified with the current data-driven PDE discovery approaches. In this study, an innovative framework is developed that combines datadriven and data-assimilation methods for simultaneously identifying physical processes and inferring model parameters. Spatiotemporal measurement data are first divided into a training data set and a testing data set. Using the training data set, a data-driven method is developed to learn the governing equation of the considered physical problem by identifying the occurred (or dominated) processes and selecting the proper empirical model. Through introducing a prediction error of the learned governing equation for the testing data set, a data-assimilation method is devised to estimate the uncertain model parameters of the selected empirical model. For the contaminant solute transport problem investigated, the results demonstrate that the proposed method can adequately identify the considered physical processes via concurrently discovering the corresponding governing equations and inferring uncertain parameters of nonlinear models, even in the presence of measurement errors. This work helps to broaden the applicable area of the research of data driven discovery of governing equations of physical problems. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2019_05_008.pdf 1237KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次