JOURNAL OF COMPUTATIONAL PHYSICS | 卷:242 |
An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes | |
Article | |
Monkola, Sanna | |
关键词: Controllability; Spectral element method; Coupled problem; Fluid-structure interaction; Fourth-order Runge-Kutta; | |
DOI : 10.1016/j.jcp.2013.02.022 | |
来源: Elsevier | |
【 摘 要 】
This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Periaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcp_2013_02_022.pdf | 4523KB | download |