JOURNAL OF COMPUTATIONAL PHYSICS | 卷:261 |
Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH | |
Article | |
Leroy, A.1  Violeau, D.1  Ferrand, M.2  Kassiotis, C.1  | |
[1] Univ Paris Est, St Venant Lab Hydraul, F-78400 Chatou, France | |
[2] EDF R&D, MFEE, F-78400 Chatou, France | |
关键词: SPH; Projection method; Incompressible; Boundary conditions; | |
DOI : 10.1016/j.jcp.2013.12.035 | |
来源: Elsevier | |
【 摘 要 】
This work aims at improving the 2-D incompressible SPH model (ISPH) by adapting it to the unified semi-analytical wall boundary conditions proposed by Ferrand et al. [10]. The ISPH algorithm considered is as proposed by Lind et al. [25], based on the projection method with a divergence-free velocity field and using a stabilising procedure based on particle shifting. However, we consider an extension of this model to Reynolds-Averaged Navier-Stokes equations based on the k-epsilon turbulent closure model, as done in [10]. The discrete SPH operators are modified by the new description of the wall boundary conditions. In particular, a boundary term appears in the Laplacian operator, which makes it possible to accurately impose a von Neumann pressure wall boundary condition that corresponds to impermeability. The shifting and free-surface detection algorithms have also been adapted to the new boundary conditions. Moreover, a new way to compute the wall renormalisation factor in the frame of the unified semi-analytical boundary conditions is proposed in order to decrease the computational time. We present several verifications to the present approach, including a lid-driven cavity, a water column collapsing on a wedge and a periodic schematic fish-pass. Our results are compared to Finite Volumes methods, using Volume of Fluids in the case of free-surface flows. We briefly investigate the convergence of the method and prove its ability to model complex free-surface and turbulent flows. The results are generally improved when compared to a weakly compressible SPH model with the same boundary conditions, especially in terms of pressure prediction. (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcp_2013_12_035.pdf | 2411KB | download |