期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:403
Global optimization for data assimilation in landslide tsunami models
Article
Ferreiro-Ferreiro, A. M.1,2  Garcia-Rodriguez, J. A.1,2  Lopez-Salas, J. G.1,2  Escalante, C.3  Castro, M. J.3 
[1] Fac Informat, Dept Math, Campus Elvina S-N, La Coruna 15071, Spain
[2] Univ A Coruna, CITIC Res Ctr Informat & Commun Technol, La Coruna, Spain
[3] Univ Malaga, Dept Anal Matemat, Malaga, Spain
关键词: Tsunamis;    Submarine avalanches;    Finite volume methods;    Data assimilation;    Global optimization;    Parallel computing;   
DOI  :  10.1016/j.jcp.2019.109069
来源: Elsevier
PDF
【 摘 要 】

The goal of this article is to make automatic data assimilation for a landslide tsunami model, given by the coupling between a non-hydrostatic multi-layer shallow-water and a Savage-Hutter granular landslide model for submarine avalanches. The coupled model is discretized using a positivity preserving second-order path-conservative finite volume scheme. Then, the data assimilation problem is posed in a global optimization framework. Later, multi-path parallel metaheuristic stochastic global optimization algorithms are developed. More precisely, a multi-path Simulated Annealing algorithm is compared with a multi-path hybrid global optimization algorithm based on coupling Simulated Annealing with gradient local searchers. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2019_109069.pdf 1014KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次