期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:322
Kershaw closures for linear transport equations in slab geometry II: High-order realizability-preserving discontinuous-Galerkin schemes
Article; Proceedings Paper
Schneider, Florian1 
[1] TU Kaiserslautern, Fachbereich Math, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
关键词: Moment models;    Minimum entropy;    Kershaw closures;    Kinetic transport equation;    Realizability-preserving;    Discontinuous-Galerkin scheme;   
DOI  :  10.1016/j.jcp.2016.07.014
来源: Elsevier
PDF
【 摘 要 】

This paper provides a generalization of the realizability-preserving discontinuous-Galerkin scheme given in [3] to general full-moment models that can be closed analytically. It is applied to the class of Kershaw closures, which are able to provide a cheap closure of the moment problem. This results in an efficient algorithm for the underlying linear transport equation. The efficiency of high-order methods is demonstrated using numerical convergence tests and non-smooth benchmark problems. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2016_07_014.pdf 4584KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次