期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:349
Canonical symplectic structure and structure-preserving geometric algorithms for Schrodinger-Maxwell systems
Article
Chen, Qiang1,2,3  Qin, Hong1,2,4  Liu, Jian1,2  Xiao, Jianyuan1,2  Zhang, Ruili1,2  He, Yang5  Wang, Yulei1,2 
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Luoyang Elect Equipment Testing Ctr, Luoyang 471000, Peoples R China
[4] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[5] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
关键词: Schrodinger-Maxwell equations;    Symplectic structure;    Discrete Poisson bracket;    Geometric algorithms;    First-principle simulation;   
DOI  :  10.1016/j.jcp.2017.08.033
来源: Elsevier
PDF
【 摘 要 】

An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon-matter interactions described by the Schrodinger-Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon-matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2017_08_033.pdf 1952KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次