期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:226
Domain decomposition method for Maxwell's equations:: Scattering off periodic structures
Article
Schaedle, Achim ; Zschiedrich, Lin ; Burger, Sven ; Klose, Roland ; Schmidt, Frank
关键词: domain decomposition;    conical diffraction;    electro-magnetic scattering;    Maxwell's equations;    lithography;    EUV;    finite elements;    perfectly matched layer method;   
DOI  :  10.1016/j.jcp.2007.04.017
来源: Elsevier
PDF
【 摘 要 】

We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). An adaptive strategy to determine optimal PML parameters is developed. Thus we can treat Wood anomalies appearing in periodic structures. We focus on the application to typical EUV lithography line masks. Light propagation within the multilayer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer. (C) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2007_04_017.pdf 391KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次