JOURNAL OF COMPUTATIONAL PHYSICS | 卷:304 |
Fast solvers for optimal control problems from pattern formation | |
Article | |
Stoll, Martin1  Pearson, John W.2  Maini, Philip K.3  | |
[1] Max Planck Inst Dynam Complex Tech Syst, Computat Methods Syst & Control Theory, D-39106 Magdeburg, Germany | |
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England | |
[3] Univ Oxford, Math Inst, Wolfson Ctr Math Biol, Oxford OX2 6GG, England | |
关键词: PDE-constrained optimization; Reaction-diffusion; Pattern formation; Newton iteration; Preconditioning; Schur complement; | |
DOI : 10.1016/j.jcp.2015.10.006 | |
来源: Elsevier | |
【 摘 要 】
The modeling of pattern formation in biological systems using various models of reaction-diffusion type has been an active research topic for many years. We here look at a parameter identification (or PDE-constrained optimization) problem where the Schnakenberg and Gierer-Meinhardt equations, two well-known pattern formation models, form the constraints to an objective function. Our main focus is on the efficient solution of the associated nonlinear programming problems via a Lagrange-Newton scheme. In particular we focus on the fast and robust solution of the resulting large linear systems, which are of saddle point form. We illustrate this by considering several two-and three-dimensional setups for both models. Additionally, we discuss an image-driven formulation that allows us to identify parameters of the model to match an observed quantity obtained from an image. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcp_2015_10_006.pdf | 1186KB | download |