期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:231
A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles
Article
Kadoch, Benjamin1,2  Kolomenskiy, Dmitry2,3  Angot, Philippe4,5  Schneider, Kai2,4 
[1] Aix Marseille Univ, IUSTI, UMR CNRS 6595, Marseille, France
[2] Aix Marseille Univ, Ecole Cent Marseille, M2P2, UMR CNRS 6181, Marseille, France
[3] CERFACS, Toulouse, France
[4] Aix Marseille Univ, Ctr Math & Informat, Marseille, France
[5] Aix Marseille Univ, LATP, UMR CNRS 6632, Marseille, France
关键词: Volume penalization;    Spectral methods;    Neumann boundary conditions;    Moving obstacles;   
DOI  :  10.1016/j.jcp.2012.01.036
来源: Elsevier
PDF
【 摘 要 】

A volume penalization method for imposing homogeneous Neumann boundary conditions in advection-diffusion equations is presented. Thus complex geometries which even may vary in time can be treated efficiently using discretizations on a Cartesian grid. A mathematical analysis of the method is conducted first for the one-dimensional heat equation which yields estimates of the penalization error. The results are then confirmed numerically in one and two space dimensions. Simulations of two-dimensional incompressible flows with passive scalars using a classical Fourier pseudo-spectral method validate the approach for moving obstacles. The potential of the method for real world applications is illustrated by simulating a simplified dynamical mixer where for the fluid flow and the scalar transport no-slip and no-flux boundary conditions are imposed, respectively. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2012_01_036.pdf 1770KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次