期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:229
Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein-Gordon potentials
Article
Vikram, M.1  Baczewski, A.1,2  Shanker, B.1,2  Kempel, L.1 
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
关键词: Accelerated Cartesian expansion (ACE);    Diffusion;    Lossy wave;    Transient;    Block-Toeplitz;    Fast multipole methods;   
DOI  :  10.1016/j.jcp.2010.08.025
来源: Elsevier
PDF
【 摘 要 】

Diffusion, lossy wave, and Klein-Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green's functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O((NsNt2)-N-2),where N-s and N-t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O(N(s)N(t)log(2)N(t)). Several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2010_08_025.pdf 685KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次