期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:288
High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids
Article
McCorquodale, P.1  Dorr, M. R.2  Hittinger, J. A. F.2  Colella, P.1 
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
关键词: Finite-volume method;    High-order discretization;    Mapped grids;    Multiblock;    Hyperbolic partial differential equations;   
DOI  :  10.1016/j.jcp.2015.01.006
来源: Elsevier
PDF
【 摘 要 】

We present an approach to solving hyperbolic conservation laws by finite-volume methods on mapped multiblock grids, extending the approach of Colella, Dorr, Hittinger, and Martin (2011) [10] for grids with a single mapping. We consider mapped multiblock domains for mappings that are conforming at inter-block boundaries. By using a smooth continuation of the mapping into ghost cells surrounding a block, we reduce the inter-block communication problem to finding an accurate, robust interpolation into these ghost cells from neighboring blocks. We demonstrate fourth-order accuracy for the advection equation for multiblock coordinate systems in two and three dimensions. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2015_01_006.pdf 5066KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次