期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:404
Solving electrical impedance tomography with deep learning
Article
Fan, Yuwei1  Ying, Lexing1,2 
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, ICME, Stanford, CA 94305 USA
关键词: Dirichlet-to-Neumann map;    Electrical impedance tomography;    Inverse problem;    Neural networks;    BCR-Net;    Convolutional neural network;   
DOI  :  10.1016/j.jcp.2019.109119
来源: Elsevier
PDF
【 摘 要 】

This paper introduces a new approach for solving electrical impedance tomography (EIT) problems using deep neural networks. The mathematical problem of EIT is to invert the electrical conductivity from the Dirichlet-to-Neumann (DtN) map. Both the forward map from the electrical conductivity to the DtN map and the inverse map are high-dimensional and nonlinear. Motivated by the linear perturbative analysis of the forward map and based on a numerically low-rank property, we propose compact neural network architectures for the forward and inverse maps for both 2D and 3D problems. Numerical results demonstrate the efficiency of the proposed neural networks. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2019_109119.pdf 1332KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次