期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:362
Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations
Article
Wang, Junping1  Ye, Xiu2  Zhai, Qilong3  Zhang, Ran3 
[1] Natl Sci Fdn, Div Math Sci, Alexandria, VA 22314 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
[3] Jilin Univ, Dept Math, Changchun, Jilin, Peoples R China
关键词: Weak Galerkin;    Finite element methods;    Discrete maximum principle;    Second order elliptic equations;   
DOI  :  10.1016/j.jcp.2018.02.013
来源: Elsevier
PDF
【 摘 要 】

This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2018_02_013.pdf 5551KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次