JOURNAL OF COMPUTATIONAL PHYSICS | 卷:387 |
Physical-density integral equation methods for scattering from multi-dielectric cylinders | |
Article | |
Helsing, Johan1  Karlsson, Anders2  | |
[1] Lund Univ, Ctr Math Sci, Box 118, S-22100 Lund, Sweden | |
[2] Lund Univ, Elect & Informat Technol, Box 118, S-22100 Lund, Sweden | |
关键词: Corner singularity; Helmholtz equation; Multiple material interface; Scattering; Transmission boundary condition; | |
DOI : 10.1016/j.jcp.2019.02.050 | |
来源: Elsevier | |
【 摘 要 】
An integral equation-based numerical method for scattering from multi-dielectric cylinders is presented. Electromagnetic fields are represented via layer potentials in terms of surface densities with physical interpretations. The existence of null-field representations then adds superior flexibility to the modeling. Local representations are used for fast field evaluation at points away from their sources. Partially global representations, constructed as to reduce the strength of kernel singularities, are used for near-evaluations. A mix of local- and partially global representations is also used to derive the system of integral equations from which the physical densities are solved. Unique solvability is proven for the special case of scattering from a homogeneous cylinder under rather general conditions. High achievable accuracy is demonstrated for several examples found in the literature. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcp_2019_02_050.pdf | 2871KB | download |