期刊论文详细信息
JOURNAL OF CLEANER PRODUCTION 卷:278
Utilizing concrete pillars as an environmental mining practice in underground mines
Article
Cao, Shuai1,2,3  Xue, Gaili1,2  Yilmaz, Erol4  Yin, Zhenyu3  Yang, Fudou1,2,5 
[1] Minist Educ, State Key Lab High Efficient Min & Safety Met Min, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Civil & Resources Engn, Beijing 100083, Peoples R China
[3] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[4] Recep Tayyip Erdogan Univ, Geotech Div, Dept Civil Engn, TR-53100 Fener, Rize, Turkey
[5] Zijin Tungsten Ind Grp Co Ltd, Zijin 8161003, Yunnan, Peoples R China
关键词: Environmental mining practice;    Ore pillar recovery;    Fiber reinforced concrete;    Compressive strength;    Computed tomography;    Numerical simulation;   
DOI  :  10.1016/j.jclepro.2020.123433
来源: Elsevier
PDF
【 摘 要 】

Ground control is an integral element of mine design and worker safety. The use of concrete pillars for underground mines is of paramount importance to maintaining the economic and operational security of structures. This paper deals with the use of fiber-reinforced concrete (FRC) as pillars via laboratory and field tests. The strength performance of prepared concrete reinforced with glass, polypropylene and polyacrylonitrile fibers was researched by a mechanical press and a computed tomography (CT) tool. Samples were tested for fiber volume fractions of 0, 0.4, 0.8 and 1.2 wt%, respectively. Results have indicated that, with the addition of fibers, the strength was improved first due to a bridging effect and then decreased due to a pull-out effect. Compared to the reference sample, the absorbed energy prevents FRC from deterioration by mechanisms of matrix cracking, fiber-matrix interface debonding and fiber rupture. The peak strains of FRC linearly rise with increasing fiber. The gray value distribution curves have also good correspondence with 2D CT pore and crack distributions, which reveal that gray value processing could depict the structural behavior of concretes reinforced with or without fiber. Theoretical analyses show that the pillar remains stable for sustainable mining. Besides, the location and size of FRC pillars are suitable for numerical calculations of the trial stope. The findings of this study can offer a key reference for the orebody pillar recovery in underground mines. (C) 2020 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jclepro_2020_123433.pdf 5957KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次