期刊论文详细信息
JOURNAL OF MOLECULAR BIOLOGY 卷:385
Role of Allosteric Switch Residue Histidine 195 in Maintaining Active-Site Asymmetry in Presynaptic Filaments of Bacteriophage T4 UvsX Recombinase
Article
Morrical, Scott W.1 
[1] Univ Vermont, Dept Biochem, Coll Med, Burlington, VT 05405 USA
关键词: recombination;    presynaptic filament;    ATPase;    kinetics;    strand exchange;   
DOI  :  10.1016/j.jmb.2008.11.003
来源: Elsevier
PDF
【 摘 要 】

Recombinases of the highly conserved RecA/Rad51. family play central roles in homologous recombination and DNA double-stranded break repair. RecA/Rad51 enzymes form presynaptic filaments on single-stranded DNA (ssDNA) that are allosterically activated to catalyze ATPase and DNA strand-exchange reactions. Information is conveyed between DNA- and ATP-binding sites, in part, by a highly conserved. glutamine residue (Gln194 in Escherichia coli RecA) that acts as an allosteric switch. The T4 UvsX protein is a divergent RecA ortholog and contains histidine (His195) in place of glutamine at the allosteric switch position. UvsX and RecA catalyze similar strand-exchange reactions, but differ in other properties. UvsX produces both ADP and AMP as products of its ssDNA-dependent ATPase activity-a property that is unique among characterized recombinases. Details of the kinetics of ssDNA-dependent ATP hydrolysis reactions indicate that UvsX-ssDNA presynaptic filaments are asymmetric and contain two classes of ATPase active sites: one that generates ADP, and another that generates AMP. Active-site asymmetry is reduced by mutations at the His195 position, since UvsX-H195Q and UvsX-H195A mutants both exhibit stronger ssDNA-dependent ATPase activity, with lower cooperativity and markedly higher ADP/AMP product ratios, than wild-type UvsX. Reduced active-site asymmetry correlates strongly with reduced ssDNA-binding affinity and DNA strand-exchange activity in both H195Q and H195A mutants. These and other results support a model in which allosteric switch residue His195 controls the formation of an asymmetric conformation of UvsX-ssDNA filaments that is active in DNA strand exchange. The implications of our findings for UvsX recombination functions, and for RecA functions in general, are discussed. (C) 2008 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmb_2008_11_003.pdf 1321KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次