期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:249
Cesaro summability of hardy spaces on the ring of integers in a local field
Article
Zheng, SJ
关键词: local field;    Cesaro means;    atomic Hardy spaces;    interpolation;   
DOI  :  10.1006/jmaa.2000.6922
来源: Elsevier
PDF
【 摘 要 】

Let O be the ring of integers in a local field K. We solve an open problem due to M. H. Taibleson (1975, Math. Notes, Vol. 15, Princeton Univ. Press, Princeton, NJ): Suppose f is an element of L-1(O). Does the Cesaro means of f converge to f almost everywhere if K has characteristic zero? To this end we study the (H-p,L-p) boundedness of the associated maximal operator sigma* to get the corresponding interpolation result on Hardy-Lorentz spaces; in particular we obtain that sigma* is of weak type (1,1). The proof mainly depends on certain estimates for the oscillatory Dirichlet kernels, which are refinements of those obtained earlier by the author (1997, J. Math. Anal. Appl. 208, 528-552). (C) 2000 Academic Press.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jmaa_2000_6922.pdf 181KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次