期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:446
On some canonical classes of cubic-quintic nonlinear Schrodinger equations
Article
Ozemir, C.1 
[1] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-34469 Istanbul, Turkey
关键词: Nonlinear Schrodinger;    Lie symmetry;    Blow-up;   
DOI  :  10.1016/j.jmaa.2016.09.039
来源: Elsevier
PDF
【 摘 要 】

In this paper we bring into attention variable coefficient cubic-quintic nonlinear Schrodinger equations which admit Lie symmetry algebras of dimension four. Within this family, we obtain the reductions of canonical equations of nonequivalent classes to ordinary differential equations using tools of Lie theory. Painleve integrability of these reduced equations is investigated. Exact solutions through truncated Painleve expansions are achieved in some cases. One of these solutions, a conformal-group invariant one, exhibits blow-up behavior in finite time in L-p, L-infinity norm and in distributional sense. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2016_09_039.pdf 984KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次