| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:476 |
| An application of functional equations for generating ε-invariant measures | |
| Article | |
| Morawiec, Janusz1  Zurcher, Thomas1  | |
| [1] Uniwersytet Slaski, Inst Matemat, Bankowa 14, PL-40007 Katowice, Poland | |
| 关键词: Markov operators; epsilon-invariant measures; Functional equations; Integrable solutions; Iterated function system; | |
| DOI : 10.1016/j.jmaa.2019.04.013 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let (X, A, mu) be a probability space and let S: X -> X be a measurable transformation. Motivated by K. Nikodem's paper from 1991 published in the Czechoslovak Mathematical Journal [7], we concentrate on a functional equation generating measures that are absolutely continuous with respect to mu and epsilon-invariant under S. As a consequence of the investigation, we obtain a result on the existence and uniqueness of solutions phi is an element of L-1([0,1]) of the functional equation phi(x) = Sigma(N)(n=1) vertical bar f(n)'(x)vertical bar phi(f(n)(x))+ g(x), where g is an element of L-1([0, 1]) and f(1), ..., f(N) : [0,1] -> [0,1] are functions satisfying some extra conditions. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2019_04_013.pdf | 367KB |
PDF