期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:266 |
| Paley-Wiener-type theorems for a class of integral transforms | |
| Article | |
| Tuan, VK ; Zayed, AI | |
| 关键词: Paley-Wiener theorem; singular Sturm-Liouville problems; Fourier transform; Hankel transform; Weber transform; Jacobi transform; Kontorovich-Lebedev transform; | |
| DOI : 10.1006/jmaa.2001.7740 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
A characterization of weighted L-2(I) spaces in terms of their images under various integral transformations is derived, where I is an interval (finite or infinite), This characterization is then used to derive Paley-Wiener-type theorems for these spaces. Unlike the classical Paley-Wiener theorem, our theorems use real variable techniques and do not require analytic continuation to the complex plane. The class of integral transformations considered is related to singular Sturm-Liouville boundary-value problems on a half line and on the whole line. (C) 2002 Elsevier Science.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1006_jmaa_2001_7740.pdf | 176KB |
PDF