期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:359
Global Holder continuity of weak solutions to quasilinear divergence form elliptic equations
Article
Palagachev, Dian K.
关键词: Quasilinear elliptic equations;    Weak solution;    Regularity;    A priori estimates;    VMO;   
DOI  :  10.1016/j.jmaa.2009.05.044
来源: Elsevier
PDF
【 摘 要 】

We derive global Holder regularity for the W-0(1,2)(Omega)-weak solutions to the quasilinear, uniformly elliptic equation div(a(ij)(x, u)D(j)u + a(i)(x, u)) + a(x, u, Du) = 0 over a C-1-smooth domain Omega subset of R-n, n >= 2. The nonlinear terms are all of Caratheodory type with coefficients a(ij)(x, u) belonging to the class VMO of functions with vanishing mean oscillation with respect to x, while a(i)(x, u) and a(x, u, Du) exhibit controlled growths with respect to u and the gradient Du. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_05_044.pdf 198KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:3次