期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:476
Identities for Bernoulli polynomials related to multiple Tornheim zeta functions
Article
Dilcher, Karl1  Straub, Armin2  Vignat, Christophe3,4 
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 4R2, Canada
[2] Univ S Alabama, Dept Math & Stat, Mobile, AL 36688 USA
[3] Univ Paris Sud, LSS Supelec, Orsay, France
[4] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词: Bernoulli polynomials;    Bernoulli numbers;    Eulerian polynomials;    Convolution identities;   
DOI  :  10.1016/j.jmaa.2019.03.071
来源: Elsevier
PDF
【 摘 要 】

We show that each member of a doubly infinite sequence of highly nonlinear expressions of Bernoulli polynomials, which can be seen as linear combinations of certain higher-order convolutions, is a multiple of a specific product of linear factors. The special case of Bernoulli numbers has important applications in the study of multiple Tornheim zeta functions. The proof of the main result relies on properties of Eulerian polynomials and higher-order Bernoulli polynomials. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_03_071.pdf 836KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次