期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:470
Periodic solutions of linear, Riccati, and Abel dynamic equations
Article
Bohner, Martin1  Gasull, Armengol2  Valls, Claudia3 
[1] Missouri S&T, Dept Math, Rolla, MO 65409 USA
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Lisbon, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
关键词: Linear, Riccati and Abel differential and difference equations;    Time scales;    Periodic function;    Melnikov function;   
DOI  :  10.1016/j.jmaa.2018.10.018
来源: Elsevier
PDF
【 摘 要 】

We study the number of periodic solutions of linear, Riccati and Abel dynamic equations in the time scales setting. In this way, we recover known results for corresponding differential equations and obtain new results for associated difference equations. In particular, we prove that there is no upper bound for the number of isolated periodic solutions of Abel difference equations. One of the main tools introduced to get our results is a suitable Melnikov function. This is the first time that Melnikov functions are used for dynamic equations on time scales. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_10_018.pdf 368KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次