期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:297 |
On an indefinite semilinear elliptic problem on RN | |
Article | |
Megrez, N ; Giacomoni, J | |
关键词: indefinite semi-linear elliptic problem; bifurcation; Kelvin transform; Method of moving planes; | |
DOI : 10.1016/j.jmaa.2004.04.056 | |
来源: Elsevier | |
【 摘 要 】
We are dealing with the problem [GRAPHICS] where lambda is a real parameter, N > 2, h and g are a changing sign functions, and 1 < p < (N+2)/(N-2). Under suitable assumptions, and by combining the global bifurcation result of Rabinowitz [J. Funct. Anal. 7 (1971) 485-513], with a priori estimates of positive solutions, we prove the existence of a continuum of positive solutions, bifurcating from lambda(1,h) and -lambda(1,-h), the two principal eigenvalues of multiplicity one, of the associated linear problem. (C) 2004 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2004_04_056.pdf | 201KB | download |