期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:467
Energy decay of a microbeam model with a locally distributed nonlinear feedback control
Article
Guzman, Patricio1,2 
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Ctr Modelamiento Matemat, Santiago, Chile
关键词: Microbeam model;    Hyperbolic equation;    Internal stabilization;    Nonlinear feedback control;    Exponential energy decay;    Polynomial energy decay;   
DOI  :  10.1016/j.jmaa.2018.07.006
来源: Elsevier
PDF
【 摘 要 】

In this paper we address the problem of internal stabilization of the deflection of a microbeam, which is modeled by a sixth-order hyperbolic equation. Employing multiplier techniques and an integral inequality, we prove that a locally distributed nonlinear feedback control forces the energy associated to the deflection to decay exponentially or polynomially to zero. As a consequence of this, the deflection goes to the rest position as the time goes to infinity. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_07_006.pdf 357KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次