期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:478
Convergence rate of a quasilinear parabolic-elliptic chemotaxis system with logistic source
Article
Zhao, Jie1 
[1] China West Normal Univ, Coll Math & Informat, Nanchong 637000, Peoples R China
关键词: Chemotaxis;    Asymptotic behavior;    Logistic source;   
DOI  :  10.1016/j.jmaa.2019.05.047
来源: Elsevier
PDF
【 摘 要 】

This paper deals with the quasilinear parabolic-elliptic chemotaxis system {u(t) = del.(d(u) del u) - del . (chi u Delta v) +mu u(1- u) x is an element of Omega, t > 0 0= del v - v_u, x is an element of Omega, t > 0 under homogeneous Neumann boundary conditions in a bounded domain Omega subset of R-n with smooth boundary, where x > 0 and mu> 0. D(u) is supposed to satisfy D(0) > 0, D(u) >= u(alpha) with alpha is an element of (0,1). When n >= 2, the convergence rate of the solution is investigated. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_05_047.pdf 287KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次